There exists a uniform magnetic and electric field of magnitude $1\, T$ and $1\, V/m$ respectively along positive $y-$ axis. A charged particle of mass $1\,kg$ and of charge $1\, C$ is having velocity $1\, m/sec$ along $x-$ axis and is at origin at $t = 0.$ Then the co-ordinates of particle at time $\pi$ seconds will be :-
$(0,1,2)$
$(0, - {\pi ^2}/2, - 2)$
$(2, {\pi ^2}/2, 2)$
$(0, {\pi ^2}/2, 2)$
Light with an average flux of $20\, W / cm ^{2}$ falls on a non-reflecting surface at normal incidence having surface area $20\, cm ^{2} .$ The energy recelved by the surface during time span of $1$ minute is $............J$
A radiowave has maximum electric field intensity of $10^{-4}\ V/m$ on arrival at a receiving antenna. The maximum magnetic flux density of such a wave is
The electric field and magnetic field components of an electromagnetic wave going through vacuum is described by
$E _{ x }= E _0 \sin ( kz -\omega t )$
$B _{ y }= B _0 \sin ( kz -\omega t )$
Then the correct relation between $E_0$ and $B_0$ is given by
Write magnitude and dimensional formula of $\frac{1}{{\sqrt {{\mu _0}{ \in _0}} }}$
A particle of charge $q$ and mass $m$ is moving along the $x-$ axis with a velocity $v,$ and enters a region of electric field $E$ and magnetic field $B$ as shown in figures below. For which figure the net force on the charge may be zero :-